Towards a Systematic Coarse-Graining Method for Excitation Energy Transfer Networks: A Minimum-Cut Approach

Wei-Hsiang Tseng

Speaker: De-Wei Ye Advisor: Yuan-Chung Cheng Thu 08 Feb 2018

Outline

• Theoretical backgrounds:

- Excitation energy transfer (EET) networks
- The minimum-cut problem
- Methods:
 - A directed minimum-cut tree
 - Clustering methods
 - EET pathway analysis
- Results:
 - The FMO complex
 - The LHCII monomer

Light Harvesting

Population Transfer Dynamics

Minimum-Cut Maximum-Flow Theorem

• In a weighted graph, the total weights (capacities) of the edges in the minimum cut are proved to be equal to the maximum flow from a specific source node to another specific target node.

To Buildup a EET Network Model

Effective Rate matrix

A weighted directed graph!

- **R** R_{ji} : rate from state *i* to state *j*
- Node *i*: exciton state *i*
- The capacity c(i, j) of an edge E(i, j): R_{ji}

Outline

- Theoretical backgrounds:
 - Excitation energy transfer (EET) networks
 - The minimum-cut problem

• Methods:

- A directed minimum-cut tree
- Clustering methods
- EET pathway analysis
- Results:
 - The FMO complex
 - The LHCII monomer

A Directed Minimum-Cut Tree

Top-Down Clustering (TDC) Method

Directly Cut-off (DC) Method

K-Means-like (KM) Method

• K-Means-like method:

Chire, https://commons.wikimedia.org/w/index.php?curid=59409335

• Minimize the variance in each cluster:

distance
$$d_{ij} \equiv \frac{1}{\max(r_{ji}, r_{ij})}$$

variance $\equiv \frac{1}{N^2} \sum_{ij \in S_I} d_{ij}^2$

Studying the EET Pathways

- Ford-Fulkerson algorithm:
 - Pathway decompositions
 - Normalized by maximum flow

Maximum flow = 23

> 12/23

- Markovian dynamics:
 - Time-integrated flux

A shortest argument path: a pathway

Outline

- Theoretical backgrounds:
 - Excitation energy transfer (EET) networks
 - The minimum-cut problem
- Methods:
 - A directed minimum-cut tree
 - Clustering methods
 - EET pathway analysis

• Results:

- The FMO complex
- The LHCII monomer

8-Site Fenna-Matthews-Olson (FMO) Complex

- A "funnel" between the reaction center and the antenna system in green sulfur bacteria
- Sites: 8 BChl a 1.5 p 500 fs PDB: 3EOJ vtoplasmic membrane Reaction Tronrud, D. E. et al. Photosynth. Res. 2009, 100, 79 Schmidt Am Busch, M. et al. JPC L 2011, 2, 93

Chlorosome

Baseplate

Exciton Structures of the FMO Complex

Effective Hamiltonian: Schmidt Am Busch, M. et al. JPC L 2011, 2, 93

FMO Complex: Tree

• Highest exciton state to lowest exciton state

Parameters for modified Redfield theory: Wu, J. et al JPCL 2015, 6, 1240

FMO Complex: CGM's and Costs

3-Cluster CGM

5-Cluster CGM

5-Cluster CGM

FFA pathway decomposition:

```
From 8 to 1:
29%: 8 -> 3,6 -> 1
24%: 8 -> 4,5,7 -> 1
20%: 8 -> 3,6 -> 4,5,7 -> 2 -> 1
12%: 8 -> 3,6 -> 2 -> 1
11%: 8 -> 3,6 -> 4,5,7 -> 1
```


Pathways Comparison

Brixner, T. et al Nature 2005, 434, 625

Thyrhaug, E. et al *JPCL* **2016**, 7, 1653

1, 2

1.4

14-Site Light Harvesting Complex II (LHCII) Monomer

- Found in plants and many algae
- Mainly in trimer form
- 14 sites = 8 Chl a + 6 Chl b

Exciton Structures of the LHCII Monomer

Effective Hamiltonian: Schlau-Cohen, G. S. et al JPC B 2009, 113, 15352

LHCII Monomer: Costs

 Sharp decreases in Cost(N_C) are observed when N_C increases from 6 to 7 for BUC, from 8 to 9 for TDC and from 10 to 11 for KM and DC.

Integrated Flux

7-cluster BUC CGM

FFA pathway decomposition:

Unit: ps⁻¹

Pathways Comparison

Wells, K. L. et al PCCP 2014, 16, 11640

Summary

- The systematic coarse-graining approach utilizing the directed minimum-cut tree provides an effective tool to elucidate the dynamics of energy-transfer networks in light harvesting systems.
- We use the above-mentioned method to build up the coarse-grained models of the FMO complex and the LHCII monomer, and the energy pathways in the models are revealed by the Ford-Fulkerson algorithm.

Thanks for Your Listening