Understanding Complex Excitation Energy Transfer Networks with a Systematic Approach

De-Wei Ye, Wei-Hsiang Tseng, Yuan-Chung Cheng

Department of Chemistry, National Taiwan University 26 July 2018

Outlines

Backgrounds and Reviews

- Excitation energy transfer (EET) networks
- The minimum-cut approach
- LHCII monomer
- Results:
 - LHCII trimer
 - Static Disorder Effects on LHCII

Thylakoid Membrane

Minagawa, J. et al *Plant J.* **2015**, *82*, 413

Excitation Energy Transfer (EET) Network

Blankenship, R. E. *Molecular Mechanisms of Photosynthesis* 2/e, Oxford, UK, **2014**

De-Wei Ye (YCC Group, NTU) Group Meeting

Light Harvesting Complex II (LHCII)

- Found in plants and many algae
- Mainly in trimer form
- 14 sites = 8 Chl a + 6 Chl b

Modeling the EET Network

Minimum-Cut Problem

To identify bottlenecks in energy transfer networks, we apply the minimum-cut methods with Ford-Fulkerson algorithm.

Ford, L. R.; Fulkerson, D. R. Can. J. Math. 1956, 8, 399

De-Wei Ye (YCC Group, NTU) Group Meeting

Minimum-Cut Approach

Simulating EET

EET Pathway of LHCII Monomer

Outlines

- Backgrounds and Reviews
 - Excitation energy transfer (EET) networks
 - The minimum-cut approach
- Results:
 - LHCII trimer
 - Static Disorder Effects on LHCII

Model for LHCII Trimer

 20 cm⁻¹ random static disorders: prevent accidental degeneracies

Frähmcke, J. S.; Walla, P. J. Chem. Phys. Lett. 2006, 430, 397

9-Cluster Model

15-Cluster Model

Outlines

- Backgrounds and Reviews
 - Excitation energy transfer (EET) networks
 - The minimum-cut approach
- Results:
 - LHCII trimer
 - Static Disorder Effects on LHCII

Simulation of Static Disorders

- LHCII monomer
- 100 cm⁻¹ Gaussian random disorders
- Analyze the 3-cluster models
- Repeat 1000 times
- Introduce a simple energy hierarchy

exciton	C_{A}	$C_{\rm B}$	$C_{\rm C}$	r _A	r _B	r _C
1	809	168	23	18%	4%	1%
2	797	165	38	17%	3%	0%
3	514	443	43	11%	13%	1%
4	469	342	189	7%	5%	2%
5	799	177	24	18%	5%	1%
6	373	403	224	5%	6%	3%
7	455	348	197	6%	5%	2%
8	42	600	358	1%	11%	6%
9	65	576	359	1%	10%	6%
10	42	591	367	1%	10%	6%
11	368	372	260	4%	4%	3%
12	395	368	237	5%	5%	3%
13	36	597	367	0%	11%	6%
14	119	204	677	6%	8%	60%

De-Wei Ye (YCC Group, NTU) Group Meeting

4 Classes

exciton	C_{A}	$C_{\rm B}$	C _C	r _A	r _B	r _C
1	617	85	10	18%	3%	1%
2	612	99	1	17%	2%	0%
3	425	263	24	10%	6%	1%
4	389	283	40	8%	5%	1%
5	610	92	10	17%	3%	1%
6	325	338	49	6%	6%	1%
7	380	289	43	7%	5%	1%
8	28	579	105	1%	15%	3%
9	44	560	108	1%	14%	3%
10	28	573	111	0%	14%	3%
11	317	331	64	5%	5%	1%
12	330	321	61	6%	5%	1%
13	23	577	112	0%	14%	3%
14	49	61	602	3%	3%	81%

De-Wei Ye (YCC Group, NTU) Group Meeting

EET Model of LHCII

Conclusions

- Trimer form of LHCII is robust against disorders, and this could be one of the key reasons for LHCII to aggregate into trimer.
- The systematic minimum-cut coarse-graining approach provides an effective tool to elucidate the dynamics of energy transfer in photosynthetic light harvesting networks.